Search results for "Time–frequency representation"
showing 3 items of 3 documents
Effect of parametric variation of center frequency and bandwidth of morlet wavelet transform on time-frequency analysis of event-related potentials
2017
Time-frequency (TF) analysis of event-related potentials (ERPs) using Complex Morlet Wavelet Transform has been widely applied in cognitive neuroscience research. It has been widely suggested that the center frequency (fc) and bandwidth (σ) should be considered in defining the mother wavelet. However, the issue how parametric variation of fc and σ of Morlet wavelet transform exerts influence on ERPs time-frequency results has not been extensively discussed in previous research. The current study, through adopting the method of Complex Morlet Continuous Wavelet Transform (CMCWT), aims to investigate whether time-frequency results vary with different parametric settings of fc and σ. Besides, …
Non-negative matrix factorization Vs. FastICA on mismatch negativity of children
2009
In this presentation two event-related potentials, mismatch negativity (MMN) and P3a, are extracted from EEG by non-negative matrix factorization (NMF) simultaneously. Typically MMN recordings show a mixture of MMN, P3a, and responses to repeated standard stimuli. NMF may release the source independence assumption and data length limitations required by Fast independent component analysis (FastICA). Thus, in theory NMF could reach better separation of the responses. In the current experiment MMN was elicited by auditory duration deviations in 102 children. NMF was performed on the time-frequency representation of the raw data to estimate sources. Support to Absence Ratio (SAR) of the MMN co…
Detection of Ventricular Fibrillation Using the Image from Time-Frequency Representation and Combined Classifiers without Feature Extraction
2018
Due the fact that the required therapy to treat Ventricular Fibrillation (V F) is aggressive (electric shock), the lack of a proper detection and recovering therapy could cause serious injuries to the patient or trigger a ventricular fibrillation, or even death. This work describes the development of an automatic diagnostic system for the detection of the occurrence of V F in real time by means of the time-frequency representation (T F R) image of the ECG. The main novelties are the use of the T F R image as input for a classification process, as well as the use of combined classifiers. The feature extraction stage is eliminated and, together with the use of specialized binary classifiers, …